
Development Environments

Christian Drefke

Apr 22, 2022

CONTENTS:

1 What is a Development Environment? 3

2 Components 5

3 Setup 9

4 Sources 29

5 ToDo 31

6 Indices and tables 33

i

ii

Development Environments

Docs Homepage: https://devenvironment.readthedocs.io/en/latest/

CONTENTS: 1

https://devenvironment.readthedocs.io/en/latest/

Development Environments

2 CONTENTS:

CHAPTER

ONE

WHAT IS A DEVELOPMENT ENVIRONMENT?

1.1 Basics

Think of a development environment like the workbench of a handyman or the setup of an operation room with all
it’s instruments and tools. Each tool has it’s function or use and it’s fixed place. But different kinds of operations or
crafting projects might need a different toolset. And every handyman or surgeon might even use their own preferred
tools in their own preferred way.

Other professions that come in mind when thinking about such environments: Graphic Designers, Financial Traders,
Emergency Responders, Software Developers.

The environment of a software developer also needs to be structured and set up well to be able to jump right into an
existing or new project without struggling to get up to speed. It’s necessary to have a collection of tools and methods,
working together with your operating system in both, development and production stage.

1.2 Environment Location

An environment can run local on your notebook or workstation, in a virtual machine or even remote.

1.2.1 Local Development Environment

The first option for the development environment is to install and configure the development software and
tools directly on your local workstation. This provides a high degree of customization and personalization
for the developer to choose exactly how they want to work, and because it’s all installed locally, it provides
a highly portable option.

1.2.2 Hosted Development Environments

In the hosted development environment option, rather than installing the software and tools directly on
your local workstation, the developer leverages a virtual machine (shared or dedicated) from a hosting
provider where the tools are installed and made available. Developers can then use remote access tech-
nologies such as remote desktop or SSH to connect to the hosted environment to do their development.

3

Development Environments

1.2.3 Cloud Development Environments

A cloud development environment is a type of hosted environment where developers will often access
their tools from within a web application.

Definitions from: What is a Development Environment and why do you need one

1.3 Tiers - Stages of development

There are usually three tiers when developing an application. In a perfect world every developer is running new code
through all of these tiers, manually or automatically. When talking about running the code, it basically means to run it
against the server side or backend. Therefore we talk about tiers on the server side.

1.3.1 Development Tier

All development is done in the development tier. The developer is running and testing the application
against a backend that is not running and production critical processes. Depending on the project this tier
needs a whole setup of server backends, hardware and other things to test the application. In many cases
additional tools or scripts or logging features are used to debug code more efficiently during development.
These additions are not necessary or purposely deactivated during production.

1.3.2 Staging Tier

A staging tier is basically a copy of the production tier. The application is tested against this environment.
Long running performance and stability tests are usually run against this. If something is wrong with the
application, the developer is going back to the development tier to fix identified issues.

1.3.3 Production Tier

If all tests are ok and the application is cleared for production, this is where it’s activated and running.
There should be no development, bugfixing whatsover to this tier before being tested through the other
tiers.

4 Chapter 1. What is a Development Environment?

https://developer.cisco.com/learning/tracks/netdevops/dev-setup/dev-what/step/1

CHAPTER

TWO

COMPONENTS

Components of a development environment

2.1 Operating System

Not going into details here, we need at least some kind or operating system to run our environment on.

2.1.1 Linux

Probably the most powerful OS for a developer but also the one that many beginners struggle with. At least when they
are used to Windows environments before. But give it a try, though it might not be your first choice on the client side
it will definitely be the OS that you will see most on the server side.

2.1.2 Windows

Developing on Windows was quite a pain with earlier versions of the OS. At least as long as you didn’t develop
for the Windows ecosystem working with languages like .NET or VBScript. Especially developing with interpreter
languages like Python or Perl had quite a few drawbacks. I personally had at least one linux virtual machine available
to get around the issues with windows based developing.

But these times are over since we have Windows 10. It made a large step towards a developer friendly environment.
There are still a few gaps and hickups (especially when running Docker containers locally) but the requirements are
satisfied.

See this article from Alexander Lockshyn as example for someone who has the same feeling: Surprisingly Software
Development on Windows is Awesome Now

2.1.3 Mac OS

Can’t really say that much from a personal point of view about Mac OS but I know that it’s great for developers.
Plenty out there are using it for a long time. And it’s relationship and common features to Unix/Linux are probably
the main reason for this success. It might be the perfect OS for having both, a robust development environment and a
well designed UI operating system.

5

http://mourk.com/
https://medium.com/short-stories-on-software/surprisingly-software-development-on-windows-is-awesome-now-82251d66991a
https://medium.com/short-stories-on-software/surprisingly-software-development-on-windows-is-awesome-now-82251d66991a

Development Environments

2.2 Terminals and Shells

I always prefer a good CLI over a good UI and sometimes even a great UI. There are plenty out there and they can be
used more and more universally between the different operating systems:

• Bourne shell - Good old ‘bash’ from Unix/Linux based systems. Still going strong.

• Z shell - This extended bash, shortly called ‘zsh’, is used as the default shell on Macs since macOS Catalina.

• PowerShell - Open Source since 2016, this shell from Microsoft can be installed not only on Windows but also
Unix/Linux based systems. Powershell 7, stable since March 4, 2020, is the universal replacement for older 5.x
and 6.x versions.

Even if you prefer to use your mouse for all operations, you’ll need to run some commands here and there to start your
scripts, applications, containers, . . . through a terminal.

2.3 Programming Languages

Programming languages are divided in two major families, compiler and interpreter languages.

2.3.1 Compiler Languages

An application written in a compiler language needs to be translated by a compiler into “machine
code”/”assembly” before it can be executed on a computer system. The compiler is only needed for
the translation, the compiled application can run standalone afterwards.

Examples: C++, Go, Java

2.3.2 Interpreter Languages

Code written in an interpreted language needs an interpreter to be executed. The interpreter is processing
the code “on the fly”.

Examples: Perl, Python, Ruby on Rails

2.4 Editors

2.4.1 Text Editors

A text editor is, well, a text editor. There are plenty out there and in many cases a text editor can be
upgraded through add-ons to support developing features like syntax highlighting, code completion or
even version control integration.

Examples: Atom, Notepad++, Sublime, Visual Studio Code

6 Chapter 2. Components

https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/Z_shell
https://en.wikipedia.org/wiki/PowerShell
https://www.perl.org/
https://www.python.org/
https://rubyonrails.org/
https://atom.io/
https://notepad-plus-plus.org/
https://www.sublimetext.com/
https://code.visualstudio.com/

Development Environments

2.4.2 Integrated Development Environment

An “Integrated Development Environment” or short IDE is a “batteries included” software that helps you to write, test
and deliver your source code and applications in a specific programming language. Main differentiations between an
IDE and even sophisticated text editors like Notepad++ are:

• Integration in version control systems like Git

• Dependency checking

• Running your application through an interpreter for debugging directly in your IDE window

• Visual programming

And of course the features that a good text editor can do too like syntax highlighting or code search.

2.4. Editors 7

Development Environments

8 Chapter 2. Components

CHAPTER

THREE

SETUP

Let’s set up an environment for you. This section is divided into guides for different environment and deployments.
And at the moment only one guide long. Others will hopefully follow, depending on my time and possible contribu-
tions (always welcome).

3.1 Python on Windows 10

3.1.1 Overview

After successfully implementing this guide you should have a development environment for writing and running
python applications directly through a Windows 10 terminal.

This setup includes: - Version Control with Git - Python 3.8+ - Virtual Environment for Python - Microsoft Visual
Studio Code as Editor

3.1.2 OS Requirements

This setup is written for a Windows 10 platform.

9

Development Environments

Powershell Excecution-Policy

Windows 10 default security settings prevent you from running PowerShell scripts. In the “Virtual Environment” a
PowerShell script is executed to activate the virtual environment. You might run into an error which points to the
Excecution-Policy.

You can check the current excecution policy by starting a PowerShell and running the command:

Get-ExecutionPolicy

There are several ways to overcome these restrictions. Quite a few of them are described in a blog article by Scott
Sutherland which you can find under the Sources section.

For ease of use we will set the Policy to ‘RemoteSigned’. This means that remotely executed PowerShell scripts
need to be signed. Locally executed scripts don’t need to meet this requirement. Set the policy and check the result
afterwards.

Set-ExecutionPolicy RemoteSigned
Get-ExecutionPolicy

10 Chapter 3. Setup

Development Environments

Warning: Be aware that this allows the execution of local PowerShell scripts without them being signed.

3.1.3 Project Directory

Set up a base directory for your development projects. It doesn’t really matter if you have a structure below the base
directory itself but it might help organizing certain things.

My current structure is:

#Development/
apps/

<-- contains my different applications, most projects are here -->
containers/

<-- repositories for my docker container repositories -->
docs/

<-- documentation projects like this one -->
snippets/

<-- small code snippets, single methods, ... -->

3.1.4 Version Control - Git

There are a few version control systems but we are using Git.

Download and Installation

Download the Windows Installer from: https://git-scm.com/downloads

Run the Installer as usual.

3.1. Python on Windows 10 11

https://git-scm.com/downloads

Development Environments

After the installation is finished, an html page with notes and current issues for Git on Windows opens up. It’s never a
bad idea to read such notes.

You might have to reboot at this point since the git command shell will integrate into Path.

Initialize your first repository

You can run git commands from both, CMD and PowerShell, or through Git Bash which comes with the installation.
I’ll use PowerShell for this section, you just use your terminal of choice.

We won’t get into details of the usage of git but check a basic feature of it.

Change to your projects base directory and check the version of your git installation.

git --version

You should see the current git version. If not, restart your machine to update your Path.

Git requires a basic configuration before you can push your first code to a remote repository so let’s do this.

git config --global user.name "Christian Drefke"

git config --global user.email "christian.drefke@bechtle.com"

Create a directory, change into it and initialize your first local repository.

mkdir myfirstrepo

cd myfirstrepo

12 Chapter 3. Setup

Development Environments

git init

Git did now initialize a local repository in your directory. All necessary data for this repository is stored in the hidden
directory ‘.git’.

ls -Force

3.1.5 Python

Using Python on Windows 10 is quite straight forward nowadays.

Download and Installation

Download the Windows Installer from: https://www.python.org/downloads/

• Click on the ‘Download Python’ button

• Use the ‘Windows x86-64 executable installer’ for this setup

Note: You can also use the embeddable zip file for installation but this requires more manual work than just using the
installer.

Run the installer.

Make sure you have selected ‘Add Python 3.8 to PATH’.

3.1. Python on Windows 10 13

https://www.python.org/downloads/

Development Environments

If you choose ‘Custom’:

• Select ‘pip’

• (optional) Select Documentation and/or tcl/tk

14 Chapter 3. Setup

Development Environments

In the next screen, select your preferred installation directory and hit ‘Install’. The installation might take a few
minutes.

Run Python

To check if the installation was successful, start a PowerShell and start a python interpreter.

python

When the interpreter started and you see a version number together with the interpreter prompt ‘>>>’, your Python
installation is ready to use.

Note: You can leave the interpreter by typing in ‘exit()’ and Enter

Virtual Environment

Why virtual environments?

Python is bringing quite a lot of useful modules with it but there are many projects out there that use external modules,
usually installed from the Python Packaging Index. But it might happen that you are using different versions of such
module in different projects. And a newer version might have a certain method or class name changed in comparison
to an earlier version. This might brake your applications and you would have to adapt these module updates in our
code.

To avoid such dependency problems a pretty common practice is to use virtual environments. It is a good habit to
initiate a venv right after creating the project directory. And after the virtual environment got set up, activating it each
time before you start working on the project.

3.1. Python on Windows 10 15

https://pypi.org/

Development Environments

Installation

Let’s install virtualenv for python first. Start a PowerShell terminal and install virtualenv through the pip installer.

pip install virtualenv

You might get a notice that your pip version is out of date. This is no big issue but let’s update pip at this point as well.

python -m pip install --upgrade pip

Pip is now up to date.

Initialize and activate a Virtual Environment

To initialize a virtual environment, switch the directory that we created earlier. From our base development directory:

cd myfirstrepo

Now initialize the venv. We will use ‘.venv’ as the name for the environment data directory.

virtualenv .venv

16 Chapter 3. Setup

Development Environments

We now have an additional directory in our project which contains a copy of our python interpreter including it’s
scripts like pip. But to make use of this new venv we need to activate it first.

.venv/Scripts/activate.ps1

You should now see a prefix ‘(.venv)’ in front of your command prompt. This tells us that we have successfully
activated the virtual environment.

Note: Actually there’s an ‘deactivate.bat’ under the venv ‘Scripts’ directory as well but at least in my case this has
never really worked. Simply close the terminal session or use the ‘activate.ps1’ in a different project folder to switch
to it.

Note: Use the ‘activate.bat’ file if you are using CMD as your terminal.

3.1.6 Visual Studio Code

Download

Download the Windows Installer from: https://code.visualstudio.com/

3.1. Python on Windows 10 17

https://code.visualstudio.com/

Development Environments

Installation

The installation is basically straight forward but you need to lookout for the PATH variable. Check the box so that
VSCode is included.

After installation start the program to see if it’s running.

18 Chapter 3. Setup

Development Environments

Basic Setup

Every code editor comes with a sophisticated set of features but don’t necessarily have support for syntax highlighting,
remote server access (FTP, SFTP, . . .) already included.

We’ll make a very basic setup of VSCode for Python and Git.

3.1. Python on Windows 10 19

Development Environments

Syntax Highlighting

Not having prober syntax highlighting when writing code is a major pain and definitely not fun. Especially syntax
errors will happen way more often than with proper highlighting.

To enable highlighting for the Python syntax all we need to do is to enable the extension for it. On the left side of the
VSCode window select Extensions (or Ctrl+Shift+X).

You should see Python right away. Otherwise use the search field. Click “Install” to install the extension.

20 Chapter 3. Setup

Development Environments

Nothing is better for checking syntax highlighting than writing a few lines of code. To do so, open your projects
directory that we created earlier. File -> Open or Ctrl+K, Ctrl+O.

3.1. Python on Windows 10 21

Development Environments

After opening the directory you should see it on the left side in the Explorer section (else Ctrl+Shift+E to open). We’ll
now create a new file (Ctrl+N).

And add some content to it.

answer = input("The answer to the ultimate question of life, the universe and
→˓everything is ")

print(answer)

Now save (Ctrl+S) your file and give it a proper filename with file extension “.py” which is the typical file extension
for Python files.

If you did a fresh installation of VSCode you will probably see the following info message at the lower right corner.

A linter, here specifically pyLint are extensions or modules that check your written code against syntax and code
quality rules. If you like to, install this extension. You can skip this for now but you can’t start too early to write well
formatted code.

22 Chapter 3. Setup

Development Environments

Back to our repository you should see the new file in your explorer section.

VSCode gives you the possibility to directly run you newly written script.

You’ll see the script output in the terminal section of VSCode. And in this case the script even expects an input from
your side. So provide an answer to finish the script.

Èt voila, if we did everything right you just ran your first Python script.

3.1. Python on Windows 10 23

Development Environments

Integration with Git

VSCode already has an integration for Git and should recognize the hidden ‘.git’ directory from our repository au-
tomagically.

To check our repository, change to the version control section (Ctrl+Shift+G).

In this section we see all files that git recognizes as changed.

You should see plenty of changed files at this stage cause by our virtual environment directory ‘.venv’. But since we
definitely don’t want to have these files in our repository, we need to make sure that Git won’t include them. This is
where we create a new file in our directory called ‘.gitignore’.

And add a single line to it.

Environments
.venv

Settings
.vscode

Git will ignore everything that is defined in such a .gitignore file. In our case the whole directory ‘.venv’. Save the file
when ready. You should now see way less files than before. If not then something went wrong here.

Before we can commit our files to our repository, we need to stage them. This is part of a typical Git workflow and
topic at some other time.

24 Chapter 3. Setup

Development Environments

After all files are staged, write a commit message (mandatory) and commit (Ctrl+Enter).

3.1. Python on Windows 10 25

Development Environments

I guess that’s it for now. We have set up a small development environment on Windows 10 and you should be able to
write and run your first applications without breaking them by dependency issues.

3.1.7 What next?

Well, there are still plenty of things you can do to optimize your environment. But also many things to learn for
becoming more familiar with your tools and your personal workflow.

Some homework for the near future:

• Get to know Git a little bit better - Atlassian has a pretty nice manual for this

• Learn Python -

•

3.2 Structure and Requirements

All of the guides in this section need to include a minimum set of requirements to meet a setup that can be used by
developers:

• Operating System specific commands

• Git as version control

• Use of a virtual environment if available for the uses language(s)

• At least one Text Editor or IDE with at least: * Syntax Highlighting * Git Integration

• Tests and checks to see if the instructions worked

26 Chapter 3. Setup

Development Environments

The basic chapter structure for each guide is:

• Overview

• OS Requirements - Project Directory

• Version Control - Git

• [Language, e.g. Python] - (if available) Virtual Environment

• [Editor/IDE] - Download - Installation - Basic Setup - Integration with Git - Syntax Highlighting

To write your own guide you can make a copy of the ‘setupguide_template.rst’ which includes the structure above.

3.2. Structure and Requirements 27

Development Environments

28 Chapter 3. Setup

CHAPTER

FOUR

SOURCES

The content of this guide is not only based on personal experience and my own setup. This collection is also influenced
and inspired by other blog posts and articles on this topic. This is just a list of the articles and posts I can recommend
on this issue. You will find many more ways and ideas of setting up your personal environment, so please have a look
on your own.

4.1 Cisco Devnet

Since my main career is being a Cisco collaboration solution engineer and consultant. And since I’ve
written this guide primarily for a Devnet Express event session, this list of Leaning Labs from Cisco
Devnet Learning Labs should not be omitted from this list.

• What is a Development Environment and why do you need one?

4.2 Others

• 15 Ways to Bypass the PowerShell Execution Policy by Scott Sutherland

29

https://developer.cisco.com
https://developer.cisco.com
https://developer.cisco.com/learning/tracks/netdevops/dev-setup/dev-what/step/1
https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

Development Environments

30 Chapter 4. Sources

CHAPTER

FIVE

TODO

• Git Proxy Information

31

Development Environments

32 Chapter 5. ToDo

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

33

	What is a Development Environment?
	Components
	Setup
	Sources
	ToDo
	Indices and tables

